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Abstract

A prospective candidate for epilepsy surgery is studied both the ictal and interictal spikes (IS) to determine the localization of the epileptogenic
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In this work, data mining (DM) classification techniques were utilized to build an automatic detection model. The selected DM a

re: Decision Trees (J4.8), and Statistical Bayesian Classifier (naı̈ve model). The main objective was the detection of IS, isolating them
he EEG’s base activity. On the other hand, DM has an attractive advantage in such applications, in that the recognition of epileptic
oes not need a clear definition of spike morphology. Furthermore, previously ‘unseen’ patterns could be recognized by the DM w

training’.
The results obtained showed that the efficacy of the selected DM algorithms is comparable to the current visual analysis used by
oreover, DM is faster than the time required for the visual analysis of the EEG. So this tool can assist the experts by facilitating th
f a patient’s information, and reducing the time and effort required in the process.
2005 Elsevier B.V. All rights reserved.
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. Introduction

In addition to the characteristic electrographic bursts of
bnormal activity that are recorded when epileptic patients
xperience a seizure (ictal episode), the electroencephalo-
ram (EEG) of epileptics will normally display isolated sharp

ransients or “spikes” in some locations of the brain. These
nterictal spikes (IS) are a complementary source of informa-
ion in the diagnosis and localization of epilepsy.

In particular, when a prospective candidate for epilepsy
urgery is studied with long-term video/EEG monitoring,
oth the ictal (electrographic seizures) and interictal (spikes)
anifestations of epilepsy are analyzed to determine the
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localization of epileptogenic zone. The automatic or sem
tomatic method for IS detection has been required for se
decades for improving the visually analyzing large amo
of data produces fatigue and error.

Numerous attempts have been made to define a
able spike detection mechanism. However, all of them
faced the lack of a specific characterization of the ev
to detect. Some approaches have concentrated in mea
the “sharpness” of the EEG signal (Carrie, 1972), which can
be expected to soar in the “pointy peak” of a spike.Walker
(1996)attempted the detection of spikes through analog c
putation of the second time derivative (sharpness) of the
signals.Smith (1974)attempted a similar form of detecti
on the digitized EEG signal. This method however, requ
a minimum duration of the sharp transient to qualify it a
spike. Although these methods involve the duration of
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transient in a secondary way, they fundamentally consider
“sharpness” as a point property, dependent only on the very
immediate context of the time of analysis.

The promise shown by that approach has encouraged us
to use different data mining (DM) techniques. The DM com-
putational models (Flexer, 2000; Mitchell, 1997) are new
information processing techniques that extract previously
unknown and potentially useful information from large data
series. The philosophy behind these techniques resides on the
discovery of global relations and patterns that exist in large
databases, but are hidden at first analysis due to actually the
huge stored data.

In this paper, the patterns to be discovered are the IS,
isolating them from EEG’s base activity (Badier and Chauvel,
1995; Bourien and Bellanger, 2004).

2. Methods and materials

Brain electrical activity from intracranial electrodes corre-
sponding to six files (684 spikes) was recorded. It corresponds
to three patients, candidates to surgery. The patients were
evaluated with a stereo-electroencephalography technique
(Talairach et al., 1974). Depth electrodes with 5–15 contacts
were implanted in different zones of the brain in relation to the
h l
e z as
s cords

in visual form using BioScience Electroencephalography®,
with EEG Harmonie Stellate software®.

The signal analysis was approached in three phases, as
follows:

a. First, EEG experts neurologists (E1, E2) performed a
visual analysis of the EEG signals, identifying and marked
the IS, on each one of the input files. These input files,
with estimated duration of 20 min, have an average of 241
spikes each one (Fig. 1).

b. Next, we performed the pre-processing of the input signal,
with the objective of generating the detection models. The
EEG signals were analyzed through the FFT (Dietsch,
1932). Trying to obtain time localization to the properties
of the FFT, we added a sliding window to the Fourier
formula.

Based on that, since an IS has an estimated duration
of between 20 and 200 (spike 20–70 ms, or sharp wave
70–200 ms (IFSECN, 1974) 200 samples/s× 0.2 s = 40
samples, a sliding window of 64 samples proved to be
enough to contain an entire IS signal. It was determined
that a shift of eight samples between windows minimizes
the quantity of required movements, and maximizes the
percentage of coverage of the signal. The FFT assumes
a periodic signal in the input, and since we cannot guar-

d in
sary
ders
ypothesis of epileptogenic zone of each patients (Chauve
t al., 1987). The EEG signals were recorded using 200 H
ample frequency. Expert neurologists analyzed these re
Fig. 1.
antee the periodicity of the sampled signal containe
each sequence of the sliding window, it was neces
to apply windowing techniques to attenuate the bor
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of the signal in the window, so as to emulate a peri-
odic signal. Basically this means that the original signal
contained in the window is multiplied by a cosinoidal
function, which tend to zero on the borders of the window
period. Two types of windowing techniques were used:
Hanning and Rectangular. The formula used for Hanning

is Hng(f (n)) =
(

0.5 − 0.5 × cos
(

2πn
T−1

))
f (n), which

becomes zero on the borders when “n = T − 1”, being T
the period of the window, andn having values from 0 to
T − 1. The Rectangular windowing technique is simply
leaving the input signal as it is, so the function used was
P(f (n)) = f (n).

Finally, two transforming functions (tf1 and tf2) were
utilized to maximize the inherent characteristics of the IS:
tf1 = sqrt(R2 + I2), a tan (I/R) andtf2 = R2, I2, where
R andI are the real and imaginary parts, respectively of
the FFT (Fig. 1).

c. The third phase consisted in the generation of the detection
models, combining the data mining (DM) classification
algorithms with the pre-processing techniques described
above. The framework used to build the DM models was
an open source package called Weka (Witten and Frank,
2000). And the DM classification algorithms selected for
this approach were two, one based on Decision Trees
(J4.8), and the second based on Statistical Bayesian Clas-
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sis of training data. Instead of considering a simple normal
distribution to model the numerical attributes, an estima-
tion of the kernels was used (Domingos and Pazzani, 1997;
Kohavi et al., 1997; Pazzani and Michael, 1997) (Fig. 2).

The combination of the selected DM algorithms (Naı̈ve
Bayes and J4.8) with the pre-processing techniques (tf1
andtf2, Hanning and Rectangular) led to the generation of
eight detection models. Each one of these models applied
to a given EEG generates a set of initial detections. In
order to provide a way of fine-tuning the considered pos-
itive detections from the initial detection set, a precision
measure was introduced, with a numerical range from 1 to
8. So, each one of the eight generated set of initial detec-
tions combined with the precision measure produced a
total of 64 final detection sets (DMT).

This precision “tuning” measure consists in consider-
ing a well detected IS, if the detection model provides
a positive value to “n” consecutive windows (1≤ n ≤ 8).
As a shift of eight samples was used in the generation of
each file with their detection model, an IS can be shifted
to a maximum of eight samples within a given window,
that is 4 ms. Thresholds near 1 assigned to the precision
measure make the detection very sensitive, and may over-
generate marks. While values near 8 make the detection
more accurate but they may lead to an under-detection of
IS.
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ig. 2.
sifier (näıve model):
J4.8: The J4.8 decision tree is an implementation o

C4.5 method (Quinlan and Ross, 1993). A decision tree
assigns a class (or output) to a set of input attributes
instance), filtering those attributes through the decis
(tests) of the tree, going from the root to the leaf nodes
results obtained at each decision are mutually exclu
and exhaustive (Aha and Breslow, 1997; Breiman et a
1984).

Näıve model: The Näıve Bayes algorithm implemen
the statistical Bayes classifier. It uses estimate cla
whose precision values are chosen according to the a

F

. The last phase of the process consisted in the validat
the detection models, using new input EEGs that wer
used in the training stage. This test approach perm
to evaluate the performance of the models, by sim
ing a real work scenario were the existence and qua
of IS is unknown. The idea was to compare the re
of the IS detection by the DM models, with the vis
analysis performed by the experts. E1 and E2 were a
to independently detect all IS in an EEG channel
patient that had not been used when generating the
els. Then, a third expert that had not being involved in



108 P. Valenti et al. / Journal of Neuroscience Methods 150 (2006) 105–110

Fig. 3.

of the previous detections (ED), analyzed and compared
the positive detections generated by DM, and the posi-
tive detections by E1 and E2 (Fig. 3). Consolidating and
validating each one of the detections generated by DM,
E1 and E2, the expert ED generated a new file contain-
ing a set of positive detections, which was considered as
the “reference” (R), and was used as the basis for the sta-
tistical analysis. On this file, the percentage of detected
“matches” and “errors” were calculated, being a “match”
(TP, true positive) an IS detected by the DM model and
validated by the ED, while an “error” (FP, false positive)
is an IS detected by the DM model that was rejected by
the ED.

In order to perform the statistical analysis, each one
of the 64 DMTs and the two visual detections performed
by the experts, E1 and E2, were associated to an ordered
pair representing the values of “matches” and “errors” (TP,
FP) in the detection. In particular for the R file, these val-
ues were (1, 0), since it was used as the basis for the
analysis.

3. Results

Fig. 4shows all the DMTs plotted based on their respective
coordinates (TP over theX-axis, FP over theY-axis), along
with values for E1 and E2. To be able to compare the points
plotted in the chart, a “distance” measure to theR-coordinates
(1, 0) was required. Using the Euclidean distance formula√

(1 − TP)2 + FP2, it can be observed that more than 15% of
the DMTs are located closer to the R than E2, and almost 50%
of the total DMTs are better located than E1. Also, almost
40% of the DMTs detected more TPs (got better performance
on TP) than E1 and E2. And 75% of the DMTs got lower FP
than E1, and almost 40% were below of E2 FP.

Fig. 5 shows the IS detected in R with the matching
detections from E1, E2 and the top-10 ranked DMTs based
on their distance to R. The table does not intend to reflect
the temporal relation between the IS in the EEG, but to
show the 88 detected IS in a sequential order. It is possi-
ble observer the top-10 ranked DMTs based on their distance
to R, we can see there is no clear winner in terms of DM algo-
rithm, transform function or windowing technique, although
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Fig. 4. Chart comparing the performance of the marks generated by E1 and E2, and the positive detections generated by the models. TP, true positives; FP,
false positives; ED, expert.

Fig. 5. Chart showing the coverage of the marks generated by Naı̈veBayes and E2, over the “real marks” set generated by ED.

the combination of Näıve Bayes, Hanning andtf2 = R2, I2

obtained the shorter distance to R. Furthermore, we can see
that within these top-10 DMTs, the DM algorithm Naı̈ve
Bayes was used by 6 out of 10 DMTs, and the windowing
technique Hanning was used also by 6 out of 10. In terms of
transform function, both TF1 and TF2 were used equally (5
and 5) in the top-10 list.

Fig. 2 shows one of the decision tree generated with the
DM algorithm J4.8.

4. Conclusions

In this paper we have applied the data mining classification
algorithms, Decision Trees (J4.8), and Statistical Bayesian
Classifier (näıve model). The DM approach proved to be very
useful in the recognition of epileptic discharges.

The obtained results showed that the efficacy of the used
DM algorithms is comparable to the current visual analy-
sis used by the experts in their daily work of detecting IS
in EEGs. DM offers an advantage in comparison with the
classical methods: nonlinear modeling method (Diambra,
2002), wavelets and time–frequency approaches (Senhadji
and Wendling, 2002), artificial neural network (Ko and

Chung, 2000). And it is possible to modify the character-
istics of the algorithms based on the user needs, a DM model
can be used that maximizes the percentage of TP, taking the
risk of over-detection thus generating more quantity of FP. On
the other side, it may be desired to use a model that generate
detection of IS under the optimum TP rate, but minimizing
the percentage of FP. In this case, the physician will take the
risk of “loosing” some IS, but will avoid the time and effort
of analyzing the entire EEG in looking for FP.

Another advantage of the methods used in this work, is that
the recognition of epileptic discharges does not need a clear
definition of spike morphology or the duration, which is cer-
tainly necessary in rule-based detection algorithms (Carrie,
1972; Goelz et al., 2000; Kochen et al., 2002; Mitchell,
1997; Smith, 1974). Furthermore, previously ‘unseen’ pat-
terns could be recognized by the DM with proper ‘training’.

On the other hand, the benefit of these computational mod-
els is their execution speed, which is enormously faster than
the time required for the visual analysis of the EEG. So this
tool can assist the experts by facilitating the analysis of patient
information, and reducing the time and effort required in the
process.

In summary, the above procedure is promising and likely to
be useful to the physician as a more sensitive, automated and
objective method to help in the localization of the interictal
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spike zone of intractable partial seizures. The final output
can be visually verified by neurologists. Due to the clinical
relevance and demonstrated promise of this method, the con-
sequent implications are on the possible extension to online
recognition. Further investigation of this approach is war-
ranted.
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